On the Reducibility of Submodular Functions

نویسندگان

  • Jincheng Mei
  • Hao Zhang
  • Bao-Liang Lu
چکیده

The scalability of submodular optimization methods is critical for their usability in practice. In this paper, we study the reducibility of submodular functions, a property that enables us to reduce the solution space of submodular optimization problems without performance loss. We introduce the concept of reducibility using marginal gains. Then we show that by adding perturbation, we can endow irreducible functions with reducibility, based on which we propose the perturbationreduction optimization framework. Our theoretical analysis proves that given the perturbation scales, the reducibility gain could be computed, and the performance loss has additive upper bounds. We further conduct empirical studies and the results demonstrate that our proposed framework significantly accelerates existing optimization methods for irreducible submodular functions with a cost of only small performance losses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Results about the Contractions and the Pendant Pairs of a Submodular System

Submodularity is an important  property of set functions with deep theoretical results  and various  applications. Submodular systems appear in many applicable area, for example machine learning, economics, computer vision, social science, game theory and combinatorial optimization.  Nowadays submodular functions optimization has been attracted by many researchers.  Pendant pairs of a symmetric...

متن کامل

The Expressive Power of Binary Submodular Functions

It has previously been an open problem whether all Boolean submodular functions can be decomposed into a sum of binary submodular functions over a possibly larger set of variables. This problem has been considered within several different contexts in computer science, including computer vision, artificial intelligence, and pseudo-Boolean optimisation. Using a connection between the expressive p...

متن کامل

Submodular Function Minimization and Maximization in Discrete Convex Analysis

This paper sheds a new light on submodular function minimization and maximization from the viewpoint of discrete convex analysis. L-convex functions and M-concave functions constitute subclasses of submodular functions on an integer interval. Whereas L-convex functions can be minimized efficiently on the basis of submodular (set) function minimization algorithms, M-concave functions are identif...

متن کامل

On k-Submodular Relaxation

k-submodular functions, introduced by Huber and Kolmogorov, are functions defined on {0, 1, 2, . . . , k}n satisfying certain submodular-type inequalities. k-submodular functions typically arise as relaxations of NP-hard problems, and the relaxations by k-submodular functions play key roles in design of efficient, approximation, or FPT algorithms. Motivated by this, we consider the following pr...

متن کامل

On the Links between Probabilistic Graphical Models and Submodular Optimisation. (Liens entre modèles graphiques probabilistes et optimisation sous-modulaire)

A probabilistic graphical model encodes conditional independences among random variables, which is related to factorisable distributions. Moreover, the entropy of a probability distribution on a set of discrete random variables is always bounded by the entropy of its factorisable counterpart. This is due to the submodularity of entropy on the set of discrete random variables. Submodular functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016