On the Reducibility of Submodular Functions
نویسندگان
چکیده
The scalability of submodular optimization methods is critical for their usability in practice. In this paper, we study the reducibility of submodular functions, a property that enables us to reduce the solution space of submodular optimization problems without performance loss. We introduce the concept of reducibility using marginal gains. Then we show that by adding perturbation, we can endow irreducible functions with reducibility, based on which we propose the perturbationreduction optimization framework. Our theoretical analysis proves that given the perturbation scales, the reducibility gain could be computed, and the performance loss has additive upper bounds. We further conduct empirical studies and the results demonstrate that our proposed framework significantly accelerates existing optimization methods for irreducible submodular functions with a cost of only small performance losses.
منابع مشابه
Some Results about the Contractions and the Pendant Pairs of a Submodular System
Submodularity is an important property of set functions with deep theoretical results and various applications. Submodular systems appear in many applicable area, for example machine learning, economics, computer vision, social science, game theory and combinatorial optimization. Nowadays submodular functions optimization has been attracted by many researchers. Pendant pairs of a symmetric...
متن کاملThe Expressive Power of Binary Submodular Functions
It has previously been an open problem whether all Boolean submodular functions can be decomposed into a sum of binary submodular functions over a possibly larger set of variables. This problem has been considered within several different contexts in computer science, including computer vision, artificial intelligence, and pseudo-Boolean optimisation. Using a connection between the expressive p...
متن کاملSubmodular Function Minimization and Maximization in Discrete Convex Analysis
This paper sheds a new light on submodular function minimization and maximization from the viewpoint of discrete convex analysis. L-convex functions and M-concave functions constitute subclasses of submodular functions on an integer interval. Whereas L-convex functions can be minimized efficiently on the basis of submodular (set) function minimization algorithms, M-concave functions are identif...
متن کاملOn k-Submodular Relaxation
k-submodular functions, introduced by Huber and Kolmogorov, are functions defined on {0, 1, 2, . . . , k}n satisfying certain submodular-type inequalities. k-submodular functions typically arise as relaxations of NP-hard problems, and the relaxations by k-submodular functions play key roles in design of efficient, approximation, or FPT algorithms. Motivated by this, we consider the following pr...
متن کاملOn the Links between Probabilistic Graphical Models and Submodular Optimisation. (Liens entre modèles graphiques probabilistes et optimisation sous-modulaire)
A probabilistic graphical model encodes conditional independences among random variables, which is related to factorisable distributions. Moreover, the entropy of a probability distribution on a set of discrete random variables is always bounded by the entropy of its factorisable counterpart. This is due to the submodularity of entropy on the set of discrete random variables. Submodular functio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016